Estimation in Dirichlet Random Effects Models
نویسندگان
چکیده
We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomial and Dirichlet distributions, and is shown to be an improvement, in terms of operator norm and efficiency, over other commonly used MCMC algorithms. We also investigate methods for the estimation of the precision parameter of the Dirichlet process, finding that maximum likelihood may not be desirable, but a posterior mode is a reasonable approach. Examples are given to show how these models perform on real data. Our results complement both the theoretical basis of the Dirichlet process nonparametric prior and the computational work that has been done to date.
منابع مشابه
Characterizing the variance improvement in linear Dirichlet random effects models
An alternative to the classical mixedmodel with normal random effects is to use a Dirichlet process to model the random effects. Such models have proven useful in practice, and we have observed a noticeable variance reduction, in the estimation of the fixed effects, when the Dirichlet process is used instead of the normal. In this paper we formalize this notion, and give a theoretical justifica...
متن کاملLINEAR MIXED MODEL ESTIMATION WITH DIRICHLET PROCESS RANDOM EFFECTS By CHEN LI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy LINEAR MIXED MODEL ESTIMATION WITH DIRICHLET PROCESS RANDOM EFFECTS By Chen Li August 2012 Chair: George Casella Major: Statistics The linear mixed model is very popular, and has proven useful in many areas of applications. (See, for exa...
متن کاملIntroducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملClustering in Additive Mixed Models with Approximate Dirichlet Process Mixtures using the EM Algorithm
SUMMARY: We consider additive mixed models for longitudinal data with a nonlinear time trend. As random effects distribution an approximate Dirichlet process mixture is proposed that is based on the truncated version of the stick breaking presentation of the Dirichlet process and provides a Gaussian mixture with a data driven choice of the number of mixture components. The main advantage of the...
متن کاملClustering in linear mixed models with Dirichlet process mixtures using EM algorithm
SUMMARY: In linear mixed models the assumption of normally distributed random effects is often inappropriate and unnecessary restrictive. The proposed Dirichlet process mixture assumes a hierarchical Gaussian mixture. In addition to the weakening of distributions assumptions the specification allows to estimate clusters of observations with a similar random effects structure identified. An Expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009